
1

Copyright Shawn Bohner

Software Security Software Security
Impact AnalysisImpact Analysis

Principle Investigators: Shawn Bohner and Denis GracaninPrinciple Investigators: Shawn Bohner and Denis Gracanin
Ph.D. Students: Chang Dong, Ph.D. Students: Chang Dong, Boby Boby George, Jianghui Ying, George, Jianghui Ying,

and and Yunxian ZhouYunxian Zhou

Department of Computer ScienceDepartment of Computer Science

2

Copyright Shawn Bohner

The Challenge

n Demand for Common Criteria Information Technology

Security Evaluations exceeding supply of Evaluators
n Labor intensive CCITSE process

n Effort in Weeks and Calendar time in Months

n National Information A ssurance A cquisition Policy (NSTISSP #11)

July 2002 mandate for SW security evaluations
n Limited Number of Testing Labs
n And then there are all the software updates…

n How can this situation be alleviated?
n Relax policy & allow lesser/non-evaluated systems
n Increase supply of Evaluators

n Increase the productivity of Evaluators &&

• Basic problem addressed by this research is one of a labor intensive
CCITSE process coupled with instant demand brought on by NIAAP
mandate for all IT security related software to be Common Criteria
evaluated.

• This is exacerbated by the normal software evolution situation where
software updates (versions…) must also be re-evaluated.

• Unfortunately, the demand exceeds the supply and evaluations are
predictably becoming the bottleneck for government security
software acquisition.

There are three obvious responses to the situation

1. Relax policy – a non-starter

2. Full-employment act for evaluators – like Y2K, mobilizing this
number of resources will be costly

3. Automate key areas of the CCITSE process that consume the
largest portions of time and effort. – Our solution fits here ;-)

3

Copyright Shawn Bohner

Goal: Quicken and Clarify CCITSE

n Improve Efficiency of CCITSE Process
through Better Navigation
n Reduce time in navigating the documentation

(shorten the conceptual distances)
n Reduce effort and time by identifying failing

evaluations early
n Reduce time for key time consuming activities

n Improve Effectiveness of CCITSE Process
through Better Visibility
n Increase confidence of evaluations
n Better decisions

n Bottom Line: Automate Key Evaluation Steps

From a business perspective, what are the goals of this research?

1. Improve efficiency by automating navigation through the enormous
amounts of software documentation and source code during the
evaluation process. – You will probably get a comment here about
most systems under evaluation come with little documentation. The
appropriate reply is that these are the ones that are failing the
evaluation process. The vendors are paying big bucks for the TOE
to be revised (not to mention the delayed time before someone
starts buying their product ;-)

Note that the map created for navigation has a great feature of
providing an initial analysis if the evaluation will fail – that is, if the
map is not complete enough for navigation, it is probably an
indication of likely failure and a pruning opportunity for an
overburdened evaluation process.

2. Improve effectiveness with better visibility – the impact analysis
provides a significant structure from which to determine if a software
product meets the Common Criteria and even a mechanism for
determining how well the system meets them. This increases
confidence of the evaluators (early thus saving time) and results in
better decisions that thwart vulnerabilities.

4

Copyright Shawn Bohner

Technical Approach

n Employ Complementary Technologies
n Software Impact Analysis

n Software Visualization / Virtual Environments

n Develop Software Security Impacts Model to
Analyze Inherent Dependencies
n Relevant to CC* structure and semantics
n Provides traceability framework for revising TOE
n Readily depicted in a visual context

n Develop Virtual Environment for Evaluators
n Analyze the Target Of Evaluation Artifacts
n Navigate the TOE Artifacts during Evaluation

* - Common Criteria

Our technical approach is to combine the benefits of two proven
technologies that in this context complement each other.

1. The first is software (change) impact analysis. This technology uses
the dependency (formal and non-formal) relationships between
software life cycle objects (SLOs) to identify the potential ripple-
effects of software changes (also used to identify software
architecture structures). This dependency representation form,
augmented with security dependencies, provides a good basis to
identify elements of interest for CC evaluators. However, in a textual
or 2 dimensional form, these analyses are quite complex.

2. The second technology, Virtual Environments, uses 3 dimensional
visualization coupled with metaphors that allow “immersion” in the
representation – thus allowing better visualization of large corpuses
of information and better navigation to constituent parts. In
particular, this applies to all of the elements of the TOE as the CC
evaluator engages in examination.

3. Bottom line here is that the SIA and VE technologies work
synergistically with evaluators to alleviate many of the bottlenecks in
the CCITSE process.

5

Copyright Shawn Bohner

CCTool Application

SIA-Viz Builds on NIST’s CCTool

SIA-Viz Application

Security
Objectives

Target OfTarget Of
EvaluationEvaluation
(System &(System &
Documents)Documents)

Security
Requirements

EnvironmentalEnvironmental
ConsiderationsConsiderations
(Policies, Threats,(Policies, Threats,
& Assumptions)& Assumptions)

Security
Target (ST) /
Protection
Profile (PP)

Revised
TOE

CommonCommon
CriteriaCriteria
EvaluationEvaluation

Common
Criteria
Standard

This slide shows how the SIA-Viz environment augments the CC tool (a
recognized tool in the NIST/NIAP suite). The CCTool is an instrument
to help with the production of the Security Target (report) and Protection
Profile (report). For the most part, these are similar reports that are a
product of interviews with subject matter experts.

This slide has a series of builds starting with the overall information flow
into the CC evaluation. The second build shows the application o f the
CCTool focusing on Security Objectives, Security Requirements, and
the ST/PP report.

The final build shows where SIA-Viz builds on the CCTool by
introducing key dependencies for the Revised TOE and a mechanism to
support the CC Evaluator in the analysis and navigation aspects of
evaluation.

6

Copyright Shawn Bohner

Basic Security Impact Analysis

False Positive
Impact Set

(FPIS)

AIS = CIS + DIS - FPIS

Discovered
Impact Set

(DIS)

Candidate
Impact Set

(CIS)

Examine/
Verify

Impacts

Starting
Impact

Set
(SIS)

Actual
Impact Set

(AIS)

Examine
Requirements
Specifications

Common Criteria
Security Requirements

Trace
Potential
Impacts

TOE Software Artifacts
(Custom, Middleware, COTS)

Impact analysis is an iterative process, starting with some seed
information, and systematically identifying impacts (dependency-
based) to result in some findings. For software security, with all of
its informal information, it is often necessarily a human in the loop
activity – seeking guidance and course correction.

Essentially, after the TOE has been revised with the dependency
information in place, the SIA process proceeds as follows:

1. A set of CC related security requirements are identified.

2. The direct and indirect impacts are traced (through the automated
facilities) to outline the potential impacts.

3. The potential impacts life cycle objects are examined and verified for
the evaluation – discovered impacts (those not identified
automatically) are added to the known impacts and those deemed
not relevant (false positives) are eliminated from the potential
impacts.

4. Iterate on the above three steps until there is a convergence on the
actual impact set.

This process is largely automated and produces a map for the evaluator
to use in the evaluation. The map is often complex and contains
considerable information that is not readily represented in a 2D form.

7

Copyright Shawn Bohner

Program
Dependence

Graphs

Traceability View of Life Cycle Objects

Code 1Code 1Code 1

Code 2Code 2Code 2

Code 3Code 3Code 3

Req’t 1Req’tReq’t 11

Req’t 2Req’tReq’t 22

Test 1Test 1

Test 2Test 2

Test 3Test 3

FUA_AR
P 1.D

FUA_AR
P 1.D

Design1Design1Design1

Design2Design2Design2

Design3Design3Design3

Type and Strength

The simplified analysis described on the previous slide provides the
basis for analyzing and navigating the manifold dependencies in the
TOE. This slide takes that process the next step showing how the
tracing is mapped among the life cycle objects.

There are a series of builds that go with the dialogue as follows:

1. The FUA_ARP 1.D component on the left traces directly to “Req’t 1”
and subsequently to “Req’t 2.”

2. The next build introduces traces to the Design components, a less
abstract artifact of the development. Note that the dotted line depicts
the idea of an indirect dependency and that subsequent dependency
relationships are indirect.

3. The next build introduces traces to Code components.

4. The next build then closes the loop with test components. Actually,
dependencies for test are related back to their respective life cycle
objects – e.g., an integration test would also have a Design
component dependency relationship. We simplified this slide to
convey the traceability relationships as they pertain to impact
analysis.

5. The next build shows the Program Dependence Graphs as the
formalism used with source code – software code analysis has a
long record of analyzing dependencies and we stand on broad
shoulders here.

6. The next build introduces the notion that “not all dependencies are
created equal.” While we use general graph theoretic techniques for

8

Copyright Shawn Bohner

Visualizing and Navigating the Impacts

9

Copyright Shawn Bohner

Web and File SystemWeb and File System

B
ro

w
se

r(
s)

 X
M

L
/V

R
M

L

B
ro

w
se

r(
s)

 X
M

L
/V

R
M

L

Security IA DatabaseSecurity IA Database

Architecture of SIA-Viz Environment

Code Code VisualizerVisualizer

Traceability Traceability VisVis..

Meta4DesignMeta4DesignCommon
Criteria
Evaluation
Methodology

CCTool

CCITSE
Evaluator

TOETOE

ST/PPST/PP

D
ep

en
d

en
cy

 A
n

al
yz

er
D

ep
en

d
en

cy
 A

n
al

yz
er

S
ec

u
ri

ty
 IA

 M
o

d
el

S
ec

u
ri

ty
 IA

 M
o

d
el

This slide outlines the basic architecture of the SIA-Viz Environment.
We exploit the fact that the software artifacts in the TOE are available
on the computer file system and the web. We can use HTML/XML
addressing to navigate the documents readily. From the Common
Criteria Evaluation Methodology, we developed a Security Impact
Analysis Model. This provides the formal representation that connects
SLOs through a network of dependencies. From this, we are developing
the dependency analyzer to “slice” out the relevant elements for the
Evaluator to examine. This information is feed into the Security Impact
Analysis Database for further slicing and analysis during the navigation,
and feed into the Traceability and source Code Visualizers to prepare it
for investigation using the XML/VRML-based Browsers.

While the Traceability and Code Visualizers are separate at this time,
we plan to integrate them. We’ve discovered that source code will not
always be the only formal representation we can glean dependencies
from automatically. Increasingly, products like Rational provide
intermediate forms of requirements models and design that can be
mined for dependencies.

Also, with our aim to develop a flexible metaphor mechanism that can
evolve with the evaluator’s needs, we have built the META4Design tool
to support the visualization aspects of the artifacts.

Note that at the top of the architecture is the ST/PP (produced by

10

Copyright Shawn Bohner

Prototype Assumptions

n Proof of Concept Prototype
n Navigation and Analysis
n Assume XML and Java (for now)

n Evaluate Dependency Analysis Models
n Software Engineering + Security

n Experiment with Appropriate Metaphors
n Investigator/Explorer
n Universe/Geographic Space
n Immersion in Virtual Environment

n Establish Foundation for More Aggressive
Automation Opportunities

It is important to clarify expectations for this work. It has only started 6
months ago, therefore we have scoped the proof of concept prototype
to focus on supporting the Evaluator’s navigation and analysis activities.
We have started with the future in mind by using XML and Java as our
demonstration situation – while C/C++ and specialized documentation
environments dominate today, we believe that XML and Java will
emerge as representations of choice in future security related systems
development.

Our short-term aims are to evaluate and refine the Dependency
Analysis Models integrated from software engineering and security
methods.

Also, we must experiment with the appropriate metaphors for the CC
Evaluators. To this end, we are currently examining
Investigator/Explorer perspectives of the CC Evaluator. We want to
have the virtual environment allow the Evaluator’s perspective to
change as he/she navigates the corpus of SLOs. When he/she
examines a requirement, the environment changes to that requirement’s
view of the universe – only seeing things that pertain to the requirement;
important things close, others far. This is why we are now looking at a
Universe/Geographic Space for our metaphor. These elements will
allow us to immerse the Evaluator in the Virtual Environment to carryout
his/her tasks.

11

Copyright Shawn Bohner

Status and Next Steps

n Basic Security Impact Model in Place
n Developing Overall SIA-Viz User Interface

n Solidifying Metaphor for Universal Objects
n Developing Metaphors for Specific Contexts

n Developing Security Impact Analysis
Database

n Integrating Traceability and Program
Dependency Analysis Elements

n Talking with Common Criteria Evaluation
Vendors for Validation on Real Examples

Future Targets include:

•Conduct Experiments to Demonstrate Benefits of the Automation

•Refine our Architecture

•Extend Automation Vision to Support Revision of TOE

•Templates already loaded with dependencies

•Refine Dependency Analysis Engine for Better Accuracy

•Incorporate Semantic Design’s DMS

•Incorporate Emerging Standards like X3D to Improve Collaborative VE

